Supplementary data

Growth of Individual Hydrogen-Bonded Nanostructures on Gold Monolayers

Juan J. Garcia-Lopez,^{*a*} Szczepan Zapotoczny,^{*b*} Peter Timmerman,^{*a*} Frank C. J. M. van Veggel,^{*a*} G. Julius Vancso,^{*b*} Mercedes Crego-Calama,^{**a*} and David N. Reinhoudt^{**a*}

^aSupramolecular Chemistry and Technology, MESA⁺ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. Fax: +31534894645; Tel: +31534892980; E-mail: D.N.Reinhoudt@ct.utwente.nl ^bMaterials Science and Technology of Polymers, MESA⁺ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Asymmetrically substituted calix[4]arene dimelamine 2 was obtained from the coupling of calix[4]arene dimelamine 3^1 and sulfide derivative 4.

Scheme 1

Calix[4]arene dimelamine 2. A solution of calix[4]arene dimelamine **3** (0.234 g, 0.25 mmol), sulfide derivative **4** (0.140 g, 0.50 mmol) and diisopropyl ethyl amine (DIPEA) (0.450 mL, 2.5 mmol) was refluxed in anhydrous THF (5 mL) under Ar atmosphere for

3 days. The solvent was removed under low pressure. Column chromatography (eluent: methanol-chlorofom 1:20) gave compound **2** as a white solid. Yield 0.270 gr (92%). M.p. 120 - 123 °C. ¹H NMR: $\delta_{\rm H}$ (CDCl₃, 300 MHz) 7.07 (m, 4H, ArH), 6.88 (m, 2H, ArH), 6.80-6.10 (m, 8H, 4 NH, 4 *o*-NHArH), 5.20- 4.90 (m, 5H, 2 NH₂, NH), 4.46 (2 ABq, 4H, 2 ArCH₂Ar), 4.00 (m, 6H, 2 OCH₂, CH₂CO), 3.68 (m, 4H, 2 OCH₂), 3.31 (q, 2H, ³*J* (H,H) = 6.7 Hz, CH₂), 3.14 (m, 6H, 2 ArCH₂Ar, CH₂), 2.50 (t, 4H, ³*J* (H,H) = 7.5 Hz, SCH₂), 2.47 (t, 4H, ³*J* (H,H) = 7.5 Hz, SCH₂), 2.10 – 1.80 (m, 8H, 4 CH₂), 1.65 – 1.20 (m, 24H, 12 CH₂), 1.15 – 1.05 (m, 6H, 2 CH₃), 1.01 – 0.86 (m, 12H, 4 CH₃); ¹³C-NMR: δ (CDCl₃, 75 MHz) 169.8, 165.8, 163.6, 157.5, 151.6, 151.3, 136.3, 133.1, 132.9, 131.8, 128.3, 121.0, 39.9, 38.8, 31.7, 31.5, 31.3, 30.9, 30.6, 29.2, 29.0, 28.7, 28.1, 28.0, 26.0, 23.0, 22.5, 22.0, 19.6, 13.5, 13.4, 10.3, 9.3; FAB-MS: *m/z*: 1154.7 ([M⁺], calcd. for C₆₄H₉₁N₁₃O₅S: 1154.69).

The capability of calix[4]arene dimelamine **2** to form the double rosette assembly $2_3 \cdot (DEB)_6$ and the ability of this assembly to mix with assembly $1_3 \cdot (DEB)_6^2$ were studied in solution. Figure 1 shows the characteristic peaks at 15.0 - 13.0 ppm for the hydrogen bonded imide hydrogens of the DEB upon formation of the homogeneus assemblies $1_3 \cdot (DEB)_6$, $2_3 \cdot (DEB)_6$, and the heterogeneous mixture of assemblies $1_3 \cdot (DEB)_6$, $1_2 \cdot 2 \cdot (DEB)_6$, $1 \cdot 2_2 \cdot (DEB)_6$ and $2_3 \cdot (DEB)_6$, upon mixing a solution of $1_3 \cdot (DEB)_6$ (1 mM, toluene) and a solution of $2_3 \cdot (DEB)_6$ (1 mM, toluene)³.

Figure 1

Procedure for the preparation of adsorbate solution $1_3 \cdot (DEB)_6$ (50 µM, toluene). Typically, a solution of calix[4]arene dimelamine 1 (1 equiv.) and barbiturate derivative DEB (2 eq) in toluene (50 mL) was stirred and sonicated until no remaining solid was present in solution.

Growth of the Hydrogen-Bonded Assemblies on the monolayer. Hexanethiol monolayers were placed into a calix[4]arene dimelamine 2 solution (50 and 20 μ M CH₂Cl₂) for one hour at room temperature. After the adsorption time, the samples were rinsed with CH₂Cl₂ (50 mL), sonicated in CH₂Cl₂ for one minute and rinsed extensively again with CH₂Cl₂. Finally, they were dried under a stream of dry N₂. Hexanethiol monolayers and monolayers containing inserted molecules of calix[4]arene dimelamine 2 were placed into a solution of the assembly 1₃•(DEB)₆ (50 μ M, toluene) for one hour at room temperature. After the exposure, the samples were rinsed with toluene (50 mL) and sonicated for 1 minute in a flask containing toluene. Finally, they were rinsed extensively again with toluene and dried under a stream of dry N₂. When the calix[4]arene dimelamine 2 was not present in the monolayers, no features corresponding to the assembly 1₃•(DEB)₆ (figure 2). This blank experiment rules out physisorption and demonstrate that the features observed in the images corresponding to the hexanethiol monolayers containing the calix[4]arene 2 are due to the growth of the assemblies 1₂•2•(DEB)₆ in the monolayer.

Figure 2. TM-AFM image (1 x 1 μ m, height profile) of a hexanethiol monolayer after treatment with a solution of assembly $1_3 \cdot (DEB)_6$. Color scale from dark to yellow: Z = 10 nm.

¹Jolliffe, K. A.; Timmerman, P.; Reinhoudt, D. N. Angew. Chem. Int. Ed. 1999, 38, 933-937.

² Timmerman, P.; Vreekamp, R. H.; Hulst, R.; Verboom, W.; Reinhoudt, D. N.; Rissanen, K.; Udachin, K.

A.; Ripmeester, J. Chem. Eur. J. 1997, 3, 1823-1832.

³ Crego-Calama, M.; Hulst, R.; Fokkens, R.; Nibbering, N. M. M.; Timmerman, P.; Reinhoudt, D. N. *Chem. Commun.* **1998**, 1021-1022.